二.填空题(共6小题)
32.下面是按一定规律排列的代数式:\({a^2}\),\(3{a^4}\),\(5{a^6}\),\(7{a^8}\),\( \ldots \)则第8个代数式是 \(15{a^{16}}\) .
\({\color{red}{【解答】}}\)解:∵\( a^{2}\),\(3{a^4}\),\(5{a^6}\),\(7{a^8}\),\( \ldots \)
∴\( \)单项式的次数是连续的偶数,系数是连续的奇数,
∴\( \)第8个代数式是:\((2 \times 8 – 1){a^{2 \times 8}} = 15{a^{16}}\).
故答案为:\(15{a^{16}}\).
\({\color{red}{【总结】}}\)此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.
33.已知\(m + n = 12\),\(m – n = 2\),则\({m^2} – {n^2} = \) 24 .
\({\color{red}{【解答】}}\)解:∵\( m+n=12\),\(m – n = 2\),
∴\( {m^2} – {n^2} = (m + n)(m – n) = 2 \times 12 = 24\),
故答案为:24
\({\color{red}{【总结】}}\)此题考查平方差公式,关键是根据平方差公式的形式解答.
34.若\({2^x} = 5\),\({2^y} = 3\),则\({2^{2x + y}} = \) 75 .
\({\color{red}{【解答】}}\)解:∵\( 2^{x}=5\),\({2^y} = 3\),
∴\( {2^{2x + y}} = {({2^x})^2} \times {2^y} = {5^2} \times 3 = 75\).
故答案为:75.
\({\color{red}{【总结】}}\)此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握运算法则是解题关键.
35.已知\(m + n = mn\),则\((m – 1)(n – 1) = \) 1 .
\({\color{red}{【解答】}}\)解:\((m – 1)(n – 1) = mn – (m + n) + 1\),
∵\( m+n=mn\),
∴\( (m – 1)(n – 1) = mn – (m + n) + 1 = 1\),
故答案为1.
\({\color{red}{【总结】}}\)本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.
36.计算:\({(a + 1)^2} – {a^2} = \) \(2a + 1\) .
\({\color{red}{【解答】}}\)解:原式\( = {a^2} + 2a + 1 – {a^2} = 2a + 1\),
故答案为:\(2a + 1\)
\({\color{red}{【总结】}}\)此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
37.已知\({a^m} = 3\),\({a^n} = 2\),则\({a^{2m – n}}\)的值为 4.5 .
\({\color{red}{【解答】}}\)解:∵\( a^{m}=3\),
∴\( {a^{2m}} = {3^2} = 9\),
∴\( {a^{2m – n}} = \frac{{{a^{2m}}}}{{{a^n}}} = \frac{9}{2} = 4.5\).
故答案为:4.5.
\({\color{red}{【总结】}}\)此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数\(a \ne 0\),因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数\(a\)可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
三.解答题(共13小题)
38.先化简,再求值:\({(x – 1)^2} + x(3 – x)\),其中\(x = – \frac{1}{2}\).
\({\color{red}{【解答】}}\)解:原式\( = {x^2} – 2x + 1 + 3x – {x^2} = x + 1\),
当\(x = – \frac{1}{2}\)时,原式\( = – \frac{1}{2} + 1 = \frac{1}{2}\).
\({\color{red}{【总结】}}\)此题主要考查了整式的混合运算\( – – \)化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
39.化简:\((y + 2)(y – 2) – (y – 1)(y + 5)\).
\({\color{red}{【解答】}}\)解:原式\( = {y^2} – 4 – {y^2} – 5y + y + 5 = – 4y + 1\),
\({\color{red}{【总结】}}\)此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
40.已知:\({x^2} – {y^2} = 12\),\(x + y = 3\),求\(2{x^2} – 2xy\)的值.
\({\color{red}{【解答】}}\)解:∵\( x^{2}-y^{2}=12\),
∴\( (x + y)(x – y) = 12\),
∵\( x+y=3\)①,
∴\( x – y = 4\)②,
①\( + \)②得,\(2x = 7\),
∴\( 2{x^2} – 2xy = 2x(x – y) = 7 \times 4 = 28\).
\({\color{red}{【总结】}}\)此题主要考查了平方差公式,二元一次方程的解法,求出\(x – y = 4\)是解本题的关键.
41.某同学化简\(a(a + 2b) – (a + b)(a – b)\)出现了错误,解答过程如下:
原式\( = {a^2} + 2ab – ({a^2} – {b^2})\) (第一步)
\( = {a^2} + 2ab – {a^2} – {b^2}\)(第二步)
\( = 2ab – {b^2}\) (第三步)
(1)该同学解答过程从第 二 步开始出错,错误原因是 ;
(2)写出此题正确的解答过程.
\({\color{red}{【解答】}}\)解:(1)该同学解答过程从第 二步开始出错,错误原因是 去括号时没有变号;
故答案是:二;去括号时没有变号;
(2)原式\( = {a^2} + 2ab – ({a^2} – {b^2})\)
\( = {a^2} + 2ab – {a^2} + {b^2}\)
\( = 2ab + {b^2}\).
\({\color{red}{【总结】}}\)考查了平方差公式和实数的运算,去括号规律:①\(a + (b + c) = a + b + c\),括号前是“\( + \)”号,去括号时连同它前面的“\( + \)”号一起去掉,括号内各项不变号;②\(a – (b – c) = a – b + c\),括号前是“\( – \)”号,去括号时连同它前面的“\( – \)”号一起去掉,括号内各项都要变号.
42.先化简,再求值:\(a(a + 2b) – {(a + 1)^2} + 2a\),其中\(a = \sqrt 2 + 1,b = \sqrt 2 – 1\).
\({\color{red}{【解答】}}\)解:原式\( = {a^2} + 2ab – ({a^2} + 2a + 1) + 2a\)
\( = {a^2} + 2ab – {a^2} – 2a – 1 + 2a\)
\( = 2ab – 1\),
当\(a = \sqrt 2 + 1,b = \sqrt 2 – 1\)时,
原式\( = 2(\sqrt 2 + 1)(\sqrt 2 – 1) – 1\)
\( = 2 – 1\)
\( = 1\).
\({\color{red}{【总结】}}\)本题考查了整式的混合运算\(-\)化简求值,能正确根据整式的运算法则进行化简是解此题的关键.
43.先化简,再求值:\((a – 2b)(a + 2b) – {(a – 2b)^2} + 8{b^2}\),其中\(a = – 2\),\(b = \frac{1}{2}\).
\({\color{red}{【解答】}}\)解:原式\( = {a^2} – 4{b^2} – {a^2} + 4ab – 4{b^2} + 8{b^2} = 4ab\),
当\(a = – 2\),\(b = \frac{1}{2}\)时,原式\( = – 4\).
\({\color{red}{【总结】}}\)此题考查了整式的混合运算\( – \)化简求值,熟练掌握运算法则是解本题的关键.
44.先化简,再求值:\((x + 2)(x – 2) + x(1 – x)\),其中\(x = – 1\).
\({\color{red}{【解答】}}\)解:原式\( = {x^2} – 4 + x – {x^2} = x – 4\),
当\(x = – 1\)时,原式\( = – 5\).
\({\color{red}{【总结】}}\)此题考查了整式的混合运算\( – \)化简求值,熟练掌握运算法则是解本题的关键.
45.先化简,再求值:\({(a + b)^2} + b(a – b) – 4ab\),其中\(a = 2\),\(b = – \frac{1}{2}\).
\({\color{red}{【解答】}}\)解:原式\( = {a^2} + 2ab + {b^2} + ab – {b^2} – 4ab = {a^2} – ab\),
当\(a = 2\),\(b = – \frac{1}{2}\)时,原式\( = 4 + 1 = 5\).
\({\color{red}{【总结】}}\)此题主要考查了整式的混合运算\( – – \)化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
46.有一张边长为\(a\)厘米的正方形桌面,因为实际需要,需将正方形边长增加\(b\)厘米,木工师傅设计了如图所示的三种方案:

小明发现这三种方案都能验证公式:\({a^2} + 2ab + {b^2} = {(a + b)^2}\),
对于方案一,小明是这样验证的:
\({a^2} + ab + ab + {b^2} = {a^2} + 2ab + {b^2} = {(a + b)^2}\)
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
\({\color{red}{【解答】}}\)解:由题意可得,
方案二:\({a^2} + ab + (a + b)b = {a^2} + ab + ab + {b^2} = {a^2} + 2ab + {b^2} = {(a + b)^2}\),
方案三:\({a^2} + \frac{{[a + (a + b)]b}}{2} + \frac{{[a + (a + b)]b}}{2} = {a^2} + ab + \frac{1}{2}{b^2} + ab + \frac{1}{2}{b^2} = {a^2} + 2ab + {b^2} = {(a + b)^2}\).
\({\color{red}{【总结】}}\)本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.
47.先化简, 再求值:\((2m + 1)(2m – 1) – {(m – 1)^2} + {(2m)^3} \div ( – 8m)\),其中\(m\)是方程\({x^2} + x – 2 = 0\)的根
\({\color{red}{【解答】}}\)解: 原式\( = 4{m^2} – 1 – ({m^2} – 2m + 1) + 8{m^3} \div ( – 8m)\)
\( = 4{m^2} – 1 – {m^2} + 2m – 1 – {m^2}\)
\( = 2{m^2} + 2m – 2\)
\( = 2({m^2} + m – 1)\),
∵\( m\)是方程\({x^2} + x – 2 = 0\)的根,
∴\( {m^2} + m – 2 = 0\),即\({m^2} + m = 2\),
则原式\( = 2 \times (2 – 1) = 2\).
\({\color{red}{【总结】}}\)本题主要考查整式的化简求值, 解题的关键是掌握平方差公式和完全平方公式、 整式的混合运算顺序和运算法则、 方程的解的定义 .
48.先化简,再求值:\((x + 1)(x – 1) + {(2x – 1)^2} – 2x(2x – 1)\),其中\(x = \sqrt 2 + 1\).
\({\color{red}{【解答】}}\)解:原式\( = {x^2} – 1 + 4{x^2} – 4x + 1 – 4{x^2} + 2x\)
\( = {x^2} – 2x\),
把\(x = \sqrt 2 + 1\)代入,得:
原式\( = {(\sqrt 2 + 1)^2} – 2(\sqrt 2 + 1)\)
\( = 3 + 2\sqrt 2 – 2\sqrt 2 – 2\)
\( = 1\).
\({\color{red}{【总结】}}\)本题考查了整式的混合运算及化简求值,做好本题要熟练掌握多项式乘以多项式的法则和整式乘法公式,此类题的思路为:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
49.阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔\((J\).\(Nplcr\),\(1550 – 1617\)年),纳皮尔发明
对数是在指数书写方式之前,直到 18 世纪瑞士数学家欧拉\((Evlcr\),\(1707 – 1783\)
年)才发现指数与对数之间的联系 .
对数的定义: 一般地, 若\({a^x} = N(a > 0,a \ne 1)\),那么\(x\)叫做以\(a\)为底\(N\)的对数,
记作:\(x = {\log _a}N\). 比如指数式\({2^4} = 16\)可以转化为\(4 = {\log _2}16\),对数式\(2 = {\log _5}25\)
可以转化为\({5^2} = 25\).
我们根据对数的定义可得到对数的一个性质:
\(\log _{a}(M· N)=\log _{a}M+\log _{a}N(a>0\),\(a \ne 1\),\(M > 0\),\(N > 0)\);理由如下:
设\({\log _a}M = m\),\({\log _a}N = n\),则\(M = {a^m}\),\(N = {a^n}\)
∴\( M· N=a^{m}· a^{n}=a^{m+n}\),由对数的定义得\(m+n=\log _{a}(M· N)\)
又∵\( m+n=\log _{a}M+\log _{a}N\)
∴\( \log _{a}(M· N)=\log _{a}M+\log _{a}N\)
解决以下问题:
(1) 将指数\({4^3} = 64\)转化为对数式 \(3 = {\log _4}64\) ;
(2) 证明\({\log _a}\frac{M}{N} = {\log _a}M – {\log _a}N(a > 0\),\(a \ne 1\),\(M > 0\),\(N > 0)\)
(3) 拓展运用: 计算\({\log _3}2 + {\log _3}6 – {\log _3}4 = \) .
\({\color{red}{【解答】}}\)解: (1) 由题意可得, 指数式\({4^3} = 64\)写成对数式为:\(3 = {\log _4}64\),
故答案为:\(3 = {\log _4}64\);
(2) 设\({\log _a}M = m\),\({\log _a}N = n\),则\(M = {a^m}\),\(N = {a^n}\),
∴\( \)\(\frac{M}{N} = \frac{{{a^m}}}{{{a^n}}} = {a^{m – n}}\),由对数的定义得\(m – n = {\log _a}\frac{M}{N}\),
又∵\( m-n=\log _{a}M-\log _{a}N\),
∴\( {\log _a}\frac{M}{N} = {\log _a}M – {\log _a}N(a > 0\),\(a \ne 1\),\(M > 0\),\(N > 0)\);
(3)\({\log _3}2 + {\log _3}6 – {\log _3}4\),
\( = {\log _3}(2 \times 6 \div 4)\),
\( = {\log _3}3\),
\( = 1\),
故答案为: 1 .
\({\color{red}{【总结】}}\)本题考查整式的混合运算、 对数与指数之间的关系与相互转化的关系, 解题的关键是明确新定义, 明白指数与对数之间的关系与相互转化关系 .
50.嘉淇准备完成题目:

发现系数“□”印刷不清楚.
(1)他把“□”猜成3,请你化简:\((3{x^2} + 6x + 8) – (6x + 5{x^2} + 2)\);
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“□”是几?
\({\color{red}{【解答】}}\)解:(1)\((3{x^2} + 6x + 8) – (6x + 5{x^2} + 2)\)
\( = 3{x^2} + 6x + 8 – 6x – 5{x^2} – 2\)
\( = – 2{x^2} + 6\);
(2)设“□”是\(a\),
则原式\( = (a{x^2} + 6x + 8) – (6x + 5{x^2} + 2)\)
\( = a{x^2} + 6x + 8 – 6x – 5{x^2} – 2\)
\( = (a – 5){x^2} + 6\),
∵\(\)标准答案的结果是常数,
∴\( a – 5 = 0\),
解得:\(a = 5\).
\({\color{red}{【总结】}}\)本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.
2019.3.23
下载地址:
更多文章: