31.下列计算正确的是\((\) \()\)
A.\(a^{2}· a^{3}=a^{6}\)
B.\({({a^2})^2} = {a^4}\)
C.\({a^8} \div {a^4} = {a^2}\)
D.\({(ab)^3} = a{b^3}\)
【解答】解:\(A\)、\(a^{2}· a^{3}=a^{5}\),故此选项错误;
\(B\)、\({({a^2})^2} = {a^4}\),正确;
\(C\)、\({a^8} \div {a^4} = {a^4}\),故此选项错误;
\(D\)、\({(ab)^3} = {a^3}{b^3}\),故此选项错误;
故选:\(B\).
【总结】此题主要考查了同底数幂的乘除运算以及积的乘方运算、幂的乘方运算,正确掌握运算法则是解题关键.
32.下列等式成立的是\((\) \()\)
A.\({x^2} + 3{x^2} = 3{x^4}\)
B.\(0.00028 = 2.8 \times {10^{ – 3}}\)
C.\({({a^3}{b^2})^3} = {a^9}{b^6}\)
D.\(( – a + b)( – a – b) = {b^2} – {a^2}\)
【解答】解:\(A\)、\({x^2} + 3{x^2} = 4{x^2}\),故此选项错误;
\(B\)、\(0.00028 = 2.8 \times {10^{ – 4}}\),故此选项错误;
\(C\)、\({({a^3}{b^2})^3} = {a^9}{b^6}\),正确;
\(D\)、\(( – a + b)( – a – b) = {a^2} – {b^2}\),故此选项错误;
故选:\(C\).
【总结】此题主要考查了平方差公式以及科学记数法、积的乘方运算,正确掌握运算法则是解题关键.
33.计算\(a^{2}· a^{3}\),结果正确的是\((\) \()\)
A.\({a^5}\)
B.\({a^6}\)
C.\({a^8}\)
D.\({a^9}\)
【解答】解:\(a^{2}· a^{3}=a^{5}\),
故选:\(A\).
【总结】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.
34.下列运算正确的是\((\) \()\)
A.\( – {(x – y)^2} = – {x^2} – 2xy – {y^2}\)
B.\({a^2} + {a^2} = {a^4}\)
C.\(a^{2}· a^{3}=a^{6}\)
D.\({(x{y^2})^2} = {x^2}{y^4}\)
【解答】解:\(A\)、\( – {(x – y)^2} = – {x^2} + 2xy – {y^2}\),此选项错误;
\(B\)、\({a^2} + {a^2} = 2{a^2}\),此选项错误;
\(C\)、\(a^{2}· a^{3}=a^{5}\),此选项错误;
\(D\)、\({(x{y^2})^2} = {x^2}{y^4}\),此选项正确;
故选:\(D\).
【总结】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.
35.下列计算正确的是\((\) \()\)
A.\(a^{2}· a^{2}=2a^{4}\)
B.\({( – {a^2})^3} = – {a^6}\)
C.\(3{a^2} – 6{a^2} = 3{a^2}\)
D.\({(a – 2)^2} = {a^2} – 4\)
【解答】解:\(A\)、\(a^{2}· a^{2}=a^{4}\),此选项错误;
\(B\)、\({( – {a^2})^3} = – {a^6}\),此选项正确;
\(C\)、\(3{a^2} – 6{a^2} = – 3{a^2}\),此选项错误;
\(D\)、\({(a – 2)^2} = {a^2} – 4a + 4\),此选项错误;
故选:\(B\).
【总结】本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式.
36.下列运算正确的是\((\) \()\)
A.\({x^3} + {x^3} = 2{x^6}\)
B.\(x^{2}· x^{3}=x^{6}\)
C.\({x^3} \div x = {x^3}\)
D.\({( – 2{x^2})^3} = – 8{x^6}\)
【解答】解:\(A\)、\({x^3} + {x^3} = 2{x^3}\),故\(A\)错误;
\(B\)、\(x^{2}· x^{3}=x^{5}\),故\(B\)错误;
\(C\)、\({x^3} \div x = {x^2}\),故\(C\)错误;
\(D\)、\({( – 2{x^2})^3} = – 8{x^6}\),故\(D\)正确.
故选:\(D\).
【总结】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键.
37.下列计算正确的是\((\) \()\)
A.\(3x – x = 3\)
B.\({a^3} \div {a^4} = \frac{1}{a}\)
C.\({(x – 1)^2} = {x^2} – 2x – 1\)
D.\({( – 2{a^2})^3} = – 6{a^6}\)
【解答】解:(A)原式\( = 2x\),故\(A\)错误;
(C)原式\( = {x^2} – 2x + 1\),故\(C\)错误;
(D)原式\( = – 8{a^6}\),故\(D\)错误;
故选:\(B\).
【总结】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.
38.下列运算正确的是\((\) \()\)
A.\({( – 3.14)^0} = 0\)
B.\(x^{2}· x^{3}=x^{6}\)
C.\({(a{b^2})^3} = {a^3}{b^5}\)
D.\(2a^{2}· a^{-1}=2a\)
【解答】解:\(A\)、\({( – 3.14)^0} = 1\),故此选项错误;
\(B\)、\(x^{2}· x^{3}=x^{5}\),故此选项错误;
\(C\)、\({(a{b^2})^3} = {a^3}{b^6}\),故此选项错误;
\(D\)、\(2a^{2}· a^{-1}=2a\),正确.
故选:\(D\).
【总结】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.
39.下列各式中,运算正确的是\((\) \()\)
A.\({({a^3})^2} = {a^5}\)
B.\({(a – b)^2} = {a^2} – {b^2}\)
C.\({a^6} \div {a^2} = {a^4}\)
D.\({a^2} + {a^2} = 2{a^4}\)
【解答】解:\(A\)、错误.\({({a^3})^2} = {a^5}\);
\(B\)、错误.\({(a – b)^2} = {a^2} – 2ab + {b^2}\);
\(C\)、正确.
\(D\)、错误.\({a^2} + {a^2} = 2{a^2}\)
故选:\(C\).
【总结】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
40.下列运算正确的是\((\) \()\)
A.\(2a + 3a = 5{a^2}\)
B.\(\sqrt {{{( – 5)}^2}} = – 5\)
C.\(a^{3}· a^{4}=a^{12}\)
D.\({(\pi – 3)^0} = 1\)
【解答】解:\(A\)、错误.\(2a + 3a = 5a\);
\(B\)、错误.\(\sqrt {{{( – 5)}^2}} = 5\);
\(C\)、错误.\(a^{3}· a^{4}=a^{7}\);
\(D\)、正确.∵\( \pi -3\ne 0\),
∴\( {(\pi – 3)^0} = 1\).
故选:\(D\).
【总结】本题考查合并同类项法则、同底数幂乘法、不等于零的数的零次幂等于1、二次根式的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
41.下列计算或运算中,正确的是\((\) \()\)
A.\({a^6} \div {a^2} = {a^3}\)
B.\({( – 2{a^2})^3} = – 8{a^3}\)
C.\((a – 3)(3 + a) = {a^2} – 9\)
D.\({(a – b)^2} = {a^2} – {b^2}\)
【解答】解:\(A\)、\({a^6} \div {a^2} = {a^4}\),此选项错误;
\(B\)、\({( – 2{a^2})^3} = – 8{a^6}\),此选项错误;
\(C\)、\((a – 3)(3 + a) = {a^2} – 9\),此选项正确;
\(D\)、\({(a – b)^2} = {a^2} – 2ab + {b^2}\),此选项错误;
故选:\(C\).
【总结】本题主要考查整式的混合运算,解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.
42.下列计算正确的是\((\) \()\)
A .\(2a· 3b=5ab\)
B .\(a^{3}· a^{4}=a^{12}\)
C .\({( – 3{a^2}b)^2} = 6{a^4}{b^2}\)
D .\({a^4} \div {a^2} + {a^2} = 2{a^2}\)
【解答】解:\(A\)、\(2a· 3b=6ab\),故此选项错误;
\(B\)、\(a^{3}· a^{4}=a^{7}\),故此选项错误;
\(C\)、\({( – 3{a^2}b)^2} = 9{a^4}{b^2}\),故此选项错误;
\(D\)、\({a^4} \div {a^2} + {a^2} = 2{a^2}\),正确 .
故选:\(D\).
【总结】此题主要考查了单项式乘以单项式以及积的乘方运算和合并同类项, 正确掌握相关运算法则是解题关键 .
43.下列运算正确的是\((\) \()\)
A.\({a^2} + {a^3} = {a^5}\)
B.\(a(b – 1) = ab – a\)
C.\(3{a^{ – 1}} = \frac{1}{{3a}}\)
D.\((3{a^2} – 6a + 3) \div 3 = {a^2} – 2a\)
【解答】解:\(A\)、\({a^2}\)、\({a^3}\)不是同类项,不能合并,错误;
\(B\)、\(a(b – 1) = ab – a\),正确;
\(C\)、\(3{a^{ – 1}} = \frac{3}{a}\),错误;
\(D\)、\((3{a^2} – 6a + 3) \div 3 = {a^2} – 2a + 1\),错误;
故选:\(B\).
【总结】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、单项式乘多项式、负整数指数幂及多项式除以单项式法则.
44.下列运算正确的是\((\) \()\)
A .\(2{m^2} + {m^2} = 3{m^4}\)
B .\({(m{n^2})^2} = m{n^4}\)
C .\(2m· 4m^{2}=8m^{2}\)
D .\({m^5} \div {m^3} = {m^2}\)
【解答】解:\(A\)、\(2{m^2} + {m^2} = 3{m^2}\),故此选项错误;
\(B\)、\({(m{n^2})^2} = {m^2}{n^4}\),故此选项错误;
\(C\)、\(2m· 4m^{2}=8m^{3}\),故此选项错误;
\(D\)、\({m^5} \div {m^3} = {m^2}\),正确 .
故选:\(D\).
【总结】此题主要考查了合并同类项以及积的乘方运算、 整式的乘除运算, 正确掌握相关运算法则是解题关键 .
45.下列运算正确的是\((\) \()\)
A.\({x^3} + {x^5} = {x^8}\)
B.\((y + 1)(y – 1) = {y^2} – 1\)
C.\({a^{10}} \div {a^2} = {a^5}\)
D.\({( – {a^2}b)^3} = {a^6}{b^3}\)
【解答】解:\(A\)、\({x^3} + {x^5}\),无法计算,故此选项错误;
\(B\)、\((y + 1)(y – 1) = {y^2} – 1\),正确;
\(C\)、\({a^{10}} \div {a^2} = {a^8}\),故此选项错误;
\(D\)、\({( – {a^2}b)^3} = – {a^6}{b^3}\),故此选项错误.
故选:\(B\).
【总结】此题主要考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.
46.下列运算正确的是\((\) \()\)
A.\(( – a + b)(a – b) \times {a^2} – {b^2} = {a^2} – {b^2}\)
B.\({a^3} + {a^4} = {a^7}\)
C.\(a^{3}· a^{2}=a^{5}\)
D.\({2^3} = 6\)
【解答】解:\(A\)、原式\( = ( – {a^2} – {b^2} + 2ab) \times {a^2} – {b^2} = [ – {(a – b)^2}] \times ({a^2} – {b^2})\)
\(B\)、\({a^3} + {a^4} = {a^7}\),底数相同,指数不同不能相加,故本选项错误;
\(C\)、\(a^{3}· a^{2}=a^{5}\),运算正确;
\(D\)、\({2^3} = 2 \times 2 \times 2 = 8\),故本选项错误;
故选:\(C\).
【总结】此题考查了有理数的乘方和整式的混合运算,熟练掌握运算法则是解本题的关键.
47.下列各运算中,计算正确的是\((\) \()\)
A.\({a^{12}} \div {a^3} = {a^4}\)
B.\({(3{a^2})^3} = 9{a^6}\)
C.\({(a – b)^2} = {a^2} – ab + {b^2}\)
D.\(2a· 3a=6a^{2}\)
【解答】解:\(A\)、原式\( = {a^9}\),不符合题意;
\(B\)、原式\( = 27{a^6}\),不符合题意;
\(C\)、原式\( = {a^2} – 2ab + {b^2}\),不符合题意;
\(D\)、原式\( = 6{a^2}\),符合题意.
故选:\(D\).
【总结】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
48.下列运算正确的是\((\) \()\)
A.\(3{a^2} – 2{a^2} = {a^2}\)
B.\( – {(2a)^2} = – 2{a^2}\)
C.\({(a + b)^2} = {a^2} + {b^2}\)
D.\( – 2(a – 1) = – 2a + 1\)
【解答】解:\(A\)、原式\( = {a^2}\),所以\(A\)选项正确;
\(B\)、原式\( = – 4{a^2}\),所以\(B\)选项错误;
\(C\)、原式\( = {a^2} + 2ab + {b^2}\),所以\(C\)选项错误;
\(D\)、原式\( = – 2a + 2\),所以\(D\)选项错误.
故选:\(A\).
【总结】本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘:\({({a^m})^n} = {a^{mn}}(m\),\(n\)是正整数);积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘:\({(ab)^n} = {a^n}{b^n}(n\)是正整数).也考查了整式的加减.
49.下列运算正确的是\((\) \()\)
A.\({a^2} + 2a = 3{a^3}\)
B.\({( – 2{a^3})^2} = 4{a^5}\)
C.\((a + 2)(a – 1) = {a^2} + a – 2\)
D.\({(a + b)^2} = {a^2} + {b^2}\)
【解答】解:\(A\)、错误.不是同类项不能合并;
\(B\)、错误.应该是\({( – 2{a^3})^2} = 4{a^6}\);
\(D\)、错误.应该是\({(a + b)^2} = {a^2} + 2ab + {b^2}\);
故选:\(C\).
【总结】本题考查多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
50.下列运算中正确的是\((\) \()\)
A.\({({a^2})^3} = {a^5}\)
B.\((2x + 1)(2x – 1) = 2{x^2} – 1\)
C.\({a^8}{a^2} = {a^4}\)
D.\({(a – 3)^2} = {a^2} – 6a + 9\)
【解答】解:\(A\)、结果是\({a^6}\),故本选项不符合题意;
\(B\)、结果是\(4{x^2} – 1\),故本选项不符合题意;
\(C\)、结果是\({a^{10}}\),故本选项不符合题意;
\(D\)、结果是\({a^2} – 6a + 9\),故本选项符合题意;
故选:\(D\).
【总结】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.
2019.3.22
下载地址:
更多文章: