一、2018年中考真题分式计算知识点分析
知识点 | 题量 | 占比 |
同底数幂的乘法 | 1 | 2.00% |
合并同类项 | 5 | 10.00% |
分式的基本性质 | 1 | 2.00% |
分式的混合运算 | 4 | 8.00% |
完全平方公式 | 2 | 4.00% |
约分 | 1 | 2.00% |
分式的化简求值 | 4 | 8.00% |
分式的加减法 | 13 | 26.00% |
分式的乘除法 | 1 | 2.00% |
分式的值为零的条件 | 5 | 10.00% |
零指数幂 | 2 | 4.00% |
分式的值 | 3 | 6.00% |
分式有意义的条件 | 8 | 16.00% |
二、 2018年中考真题分式计算难易度分析
试题难易度 | 题量 | 题号 | 题量占比 |
易 | 23 | 2,3,4,6,7,11,12,13,14,15,17,18,20,23, 24,25,26,27,29,34,44,48,49 | 46% |
较易 | 21 | 1,5,8,9,10,16,19,21,22,28,30,31,37,38, 40,41,42,43,45,46,47 | 42% |
中档 | 6 | 32,33,35,36,39,50 | 12% |
较难 | 0 | 0 | 0% |
难 | 0 | 0 | 0% |
2018年全国各省市分式中考真题汇编—分式(一)
一.选择题(共26小题)
1.(2018•牡丹江)下列运算正确的是\((\) \()\)
A.\(2a^{-3}· a^{4}=2a^{-12}\)
B.\({( – 3{a^2})^3} = – 9{a^6}\)
C.\({a^2} \div a \times \frac{1}{a} = {a^2}\)
D.\(a· a^{3}+a^{2}· a^{2}=2a^{4}\)
2.(2018•梧州)下列各式计算正确的是\((\) \()\)
A.\(a + 2a = 3a\)
B.\(x^{4}· x^{3}=x^{12}\)
C.\({(\frac{1}{x})^{ – 1}} = – \frac{1}{x}\)
D.\({({x^2})^3} = {x^5}\)
3.(2018•莱芜)若\(x\),\(y\)的值均扩大为原来3倍, 则下列分式的值保持不变的是\((\) \()\)
A .\(\frac{{2 + x}}{{x – y}}\)
B .\(\frac{{2y}}{{{x^2}}}\)
C .\(\frac{{2{y^3}}}{{3{x^2}}}\)
D .\(\frac{{2{y^2}}}{{{{(x – y)}^2}}}\)
4.(2018•苏州)计算\((1 + \frac{1}{x}) \div \frac{{{x^2} + 2x + 1}}{x}\)的结果是\((\) \()\)
A.\(x + 1\)
B.\(\frac{1}{{x + 1}}\)
C.\(\frac{x}{{x + 1}}\)
D.\(\frac{{x + 1}}{x}\)
5.(2018•云南)已知\(x + \frac{1}{x} = 6\),则\({x^2} + \frac{1}{{{x^2}}} = (\) \()\)
A.38
B.36
C.34
D.32
6.(2018•曲靖)下列计算正确的是\((\) \()\)
A.\(a^{2}· a=a^{2}\)
B.\({a^6} \div {a^2} = {a^3}\)
C.\({a^2}b – 2b{a^2} = – {a^2}b\)
D.\({( – \frac{3}{{2a}})^3} = – \frac{9}{{8{a^3}}}\)
7.(2018•山西)下列运算正确的是\((\) \()\)
A.\({( – {a^3})^2} = – {a^6}\)
B.\(2{a^2} + 3{a^2} = 6{a^2}\)
C.\(2a^{2}· a^{3}=2a^{6}\)
D.\({( – \frac{{{b^2}}}{{2a}})^3} = – \frac{{{b^6}}}{{8{a^3}}}\)
8.(2018•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:

接力中,自己负责的一步出现错误的是\((\) \()\)
A.只有乙
B.甲和丁
C.乙和丙
D.乙和丁
9.(2018•北京)如果\(a – b = 2\sqrt 3 \),那么代数式\((\frac{{a}^{2}+{b}^{2}}{2a}-b)· \frac{a}{a-b}\)的值为\((\) \()\)
A.\(\sqrt 3 \)
B.\(2\sqrt 3 \)
C.\(3\sqrt 3 \)
D.\(4\sqrt 3 \)
10.(2018•孝感)已知\(x + y = 4\sqrt 3 \),\(x – y = \sqrt 3 \),则式子\((x – y + \frac{{4xy}}{{x – y}})(x + y – \frac{{4xy}}{{x + y}})\)的值是\((\) \()\)
A.48
B.\(12\sqrt 3 \)
C.16
D.12
11.(2018•淄博)化简\(\frac{{{a^2}}}{{a – 1}} – \frac{{1 – 2a}}{{1 – a}}\)的结果为\((\) \()\)
A.\(\frac{{a + 1}}{{a – 1}}\)
B.\(a – 1\)
C.\(a\)
D.1
12.(2018•江西)计算\((-a)^{2}· \frac{b}{{a}^{2}}\)的结果为\((\) \()\)
A.\(b\)
B.\( – b\)
C.\(ab\)
D.\(\frac{b}{a}\)
13.(2018•株洲)下列运算正确的是\((\) \()\)
A.\(2a + 3b = 5ab\)
B.\({( – ab)^2} = {a^2}b\)
C.\(a^{2}· a^{4}=a^{8}\)
D.\(\frac{{2{a^6}}}{{{a^3}}} = 2{a^3}\)
14.(2018•温州)若分式\(\frac{{x – 2}}{{x + 5}}\)的值为0,则\(x\)的值是\((\) \()\)
A.2
B.0
C.\( – 2\)
D.\( – 5\)
15.(2018•陇南)若分式\(\frac{{{x^2} – 4}}{x}\)的值为0,则\(x\)的值是\((\) \()\)
A.2或\( – 2\)
B.2
C.\( – 2\)
D.0
16.(2018•天津)计算\(\frac{{2x + 3}}{{x + 1}} – \frac{{2x}}{{x + 1}}\)的结果为\((\) \()\)
A.1
B.3
C.\(\frac{3}{{x + 1}}\)
D.\(\frac{{x + 3}}{{x + 1}}\)
17.(2018•广州)下列计算正确的是\((\) \()\)
A.\({(a + b)^2} = {a^2} + {b^2}\)
B.\({a^2} + 2{a^2} = 3{a^4}\)
C.\({x^2}y \div \frac{1}{y} = {x^2}(y \ne 0)\)
D.\({( – 2{x^2})^3} = – 8{x^6}\)
18.(2018•台州)计算\(\frac{{x + 1}}{x} – \frac{1}{x}\),结果正确的是\((\) \()\)
A.1
B.\(x\)
C.\(\frac{1}{x}\)
D.\(\frac{{x + 2}}{x}\)
19.(2018•威海)化简\((a-1)\div (\frac{1}{a}-1)· a\)的结果是\((\) \()\)
A.\( – {a^2}\)
B.1
C.\({a^2}\)
D.\( – 1\)
20.(2018•泰安)计算:\( – ( – 2) + {( – 2)^0}\)的结果是\((\) \()\)
A.\( – 3\)
B.0
C.\( – 1\)
D.3
21.(2018•南充)已知\(\frac{1}{x} – \frac{1}{y} = 3\),则代数式\(\frac{{2x + 3xy – 2y}}{{x – xy – y}}\)的值是\((\) \()\)
A.\( – \frac{7}{2}\)
B.\( – \frac{{11}}{2}\)
C.\(\frac{9}{2}\)
D.\(\frac{3}{4}\)
22.(2018•内江)已知:\(\frac{1}{a} – \frac{1}{b} = \frac{1}{3}\),则\(\frac{{ab}}{{b – a}}\)的值是\((\) \()\)
A.\(\frac{1}{3}\)
B.\( – \frac{1}{3}\)
C.3
D.\( – 3\)
23.(2018•绵阳)\({( – 2018)^0}\)的值是\((\) \()\)
A.\( – 2018\)
B.2018
C.0
D.1
24.(2018•武汉)若分式\(\frac{1}{{x + 2}}\)在实数范围内有意义,则实数\(x\)的取值范围是\((\) \()\)
A.\(x > – 2\)
B.\(x < – 2\)
C.\(x = – 2\)
D.\(x \ne – 2\)
25.(2018•金华)若分式\(\frac{{x – 3}}{{x + 3}}\)的值为0,则\(x\)的值为\((\) \()\)
A.3
B.\( – 3\)
C.3或\( – 3\)
D.0
26.(2018•葫芦岛)若分式\(\frac{{{x^2} – 1}}{{x + 1}}\)的值为0,则\(x\)的值为\((\) \()\)
A.0
B.1
C.\( – 1\)
D.\( \pm 1\)
二.填空题(共24小题)
27.(2018•甘孜州)已知\(m + n = 3mn\),则\(\frac{1}{m} + \frac{1}{n}\)的值为 .
28.(2018•绥化)当\(x = 2\)时,代数式\((\frac{{2x + 1}}{x} + x) \div \frac{{x + 1}}{x}\)的值是 .
29.(2018•镇江)若分式\(\frac{5}{{x – 3}}\)有意义,则实数\(x\)的取值范围是 .
30.(2018•乐山)化简\(\frac{a}{{b – a}} + \frac{b}{{a – b}}\)的结果是
31.(2018•攀枝花)如果\(a + b = 2\),那么代数式\((a – \frac{{{b^2}}}{a}) \div \frac{{a – b}}{a}\)的值是 .
32.(2018•贵港)若分式\(\frac{2}{{x + 1}}\)的值不存在,则\(x\)的值为 .
33.(2018•包头)化简:\(\frac{{{x^2} – 4x + 4}}{{{x^2} + 2x}} \div (\frac{4}{{x + 2}} – 1) = \) .
34.(2018•昆明)若\(m + \frac{1}{m} = 3\),则\({m^2} + \frac{1}{{{m^2}}} = \) .
35.(2018•沈阳)化简:\(\frac{{2a}}{{{a^2} – 4}} – \frac{1}{{a – 2}} = \) .
36.(2018•大庆)已知\(\frac{{3x – 4}}{{(x – 1)(x – 2)}} = \frac{A}{{x – 1}} + \frac{B}{{x – 2}}\),则实数\(A = \) .
37.(2018•永州)化简:\((1 + \frac{1}{{x – 1}}) \div \frac{{{x^2} + x}}{{{x^2} – 2x + 1}} = \) .
38.(2018•武汉)计算\(\frac{m}{{{m^2} – 1}} – \frac{1}{{1 – {m^2}}}\)的结果是 .
39.(2018•湖州)当\(x = 1\)时,分式\(\frac{x}{{x + 2}}\)的值是 .
40.(2018•襄阳)计算\(\frac{{5x + 3y}}{{{x^2} – {y^2}}} – \frac{{2x}}{{{x^2} – {y^2}}} = \) .
41.(2018•常州)化简:\(\frac{a}{{a – b}} – \frac{b}{{a – b}} = \) .
42.(2018•宁波)要使分式\(\frac{1}{{x – 1}}\)有意义,\(x\)的取值应满足 .
43.(2018•长沙)化简:\(\frac{m}{{m – 1}} – \frac{1}{{m – 1}} = \) .
44.(2018•衡阳)计算:\(\frac{{{x^2}}}{{x + 1}} – \frac{1}{{x + 1}} = \) .
45.(2018•咸宁)如果分式\(\frac{1}{{x – 2}}\)有意义,那么实数\(x\)的取值范围是 .
46.(2018•江西)若分式\(\frac{1}{{x – 1}}\)有意义,则\(x\)的取值范围为 .
47.(2018•滨州)若分式\(\frac{{{x^2} – 9}}{{x – 3}}\)的值为0,则\(x\)的值为 .
48.(2018•湘西州)要使分式\(\frac{1}{{x + 2}}\)有意义,则\(x\)的取值范围为 .
49.(2018•盐城)要使分式\(\frac{1}{{x – 2}}\)有意义,则\(x\)的取值范围是 .
50.(2017•衡阳)化简:\(\frac{{{x^2} + 2x + 1}}{{x + 1}} – \frac{{{x^2} + x}}{x} = \) .
2019.3.20
下载地址:
更多文章: